An Evidence for a Novel Antiviral Mechanism: Modulating Effects of Arg-Glc Maillard Reaction Products on the Phase Transition of Multilamellar Vesicles

Author:

Ke Lijing,Luo Sihao,Rao Pingfan,Bradshaw Jeremy P.,Sa'adedin Farid,Rappolt Michael,Zhou Jianwu

Abstract

Maillard reaction products (MRPs) of protein, amino acids, and reducing sugars from many foods and aqueous extracts of herbs are found to have various bioactivities, including antiviral effects. A hypothesis was proposed that their antiviral activity is due to the interaction with the cellular membrane. Aiming to estimate the possible actions of MRPs on phospholipid bilayers, the Arg-Glc MRPs were prepared by boiling the pre-mixed solution of arginine and glucose for 60 min at 100°C and then examined at a series of concentrations for their effects on the phase transition of MeDOPE multilamellar vesicles (MLVs), for the first time, by using differential scanning calorimetry (DSC) and temperature-resolved small-angle X-ray scattering (SAXS). Arg-Glc MRPs inhibited the lamellar gel–liquid crystal (Lβ-Lα), lamellar liquid crystal–cubic (Lα-QII), and lamellar liquid crystal–inverted hexagonal (Lα-HII) phase transitions at low concentration (molar ratio of lipid vs. MRPs was 100:1 or 100:2), but promoted all three transitions at medium concentration (100:5). At high concentration (10:1), the MRPs exhibited inhibitory effect again. The fusion peptide from simian immunodeficiency virus (SIV) induces membrane fusion by promoting the formation of a non-lamellar phase, e.g., cubic (QII) phase, and inhibiting the transition to HII. Arg-Glc MRPs, at low concentration, stabilized the lamellar structure of SIV peptide containing lipid bilayers, but facilitated the formation of non-lamellar phases at medium concentration (100:5). The concentration-dependent activity of MRPs upon lipid phase transition indiciates a potential role in modulating some membrane-related biological events, e.g., viral membrane fusion.

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

Reference26 articles.

1. First performance assessment of the small-angle X-ray scattering beamline at ELETTRA;Amenitsch;J. Synchrotron. Radiat.,1998

2. Mechanism study of anti-influenza effects of radix isatidis water extract by red blood cells capillary electrophoresis;Chen;China J. Chin. Materia Med.,2006

3. The kinetics of non-lamellar phase formation in DOPE-me: relevance to biomembrane fusion;Cherezov;J. Membrane Biol.,2003

4. Structural study of the interaction between the SIV fusion peptide and model membranes;Colotto;Biochemistry,1996

5. The effect of fusio inhibitors on the phase behaviour of N-methylated dioleoylphosphatidylethanolamine;Darkes;Biochem. Biophys. Acta,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3