Author:
Deng Jiamin,Wang Shangqi,Li Nan,Chen Xiaoyan,Wang Biying,Liu Han,Zhu Lei,Cong Wei,Xiao Jing,Liu Chao
Abstract
The roles of bone morphogenetic protein (BMP) signaling in palatogenesis were well documented in the developing hard palate; however, little is known about how BMP signaling regulates the development of soft palate. In this study, we overexpressed Noggin transgene via Osr2-creKI allele to suppress BMP signaling in the developing soft palate. We found that BMP-Smad signaling was detected in the palatal muscles and surrounding mesenchyme. When BMP-Smad signaling was suppressed by the overexpressed Noggin, the soft palatal shelves were reduced in size with the hypoplastic muscles and the extroversive hypophosphatasia (HPP). The downregulated cell proliferation and survival in the Osr2-creKI;pMes-Noggin soft palates were suggested to result from the repressed Shh transcription and Gli1 activity, implicating that the BMP-Shh-Gli1 network played a similar role in soft palate development as in the hard palate. The downregulated Sox9, Tenascin-C (TnC), and Col1 expression in Osr2-creKI;pMes-Noggin soft palate indicated the impaired differentiation of the aponeurosis and tendons, which was suggested to result in the hypoplasia of palatal muscles. Intriguingly, in the Myf5-creKI;pMes-Noggin and the Myf5-creKI;Rosa26R-DTA soft palates, the hypoplastic or abrogated muscles affected little the fusion of soft palate. Although the Scx, Tnc, and Co1 transcription was significantly repressed in the tenogenic mesenchyme of the Myf5-creKI;pMes-Noggin soft palate, the Sox9 expression, and the Tnc and Col1 transcription in aponeurosis mesenchyme were almost unaffected. It implicated that the fusion of soft palate was controlled by the mesenchymal clues at the tensor veli palatini (TVP) and levator veli palatini (LVP) levels, but by the myogenic components at the palatopharyngeus (PLP) level.
Funder
National Natural Science Foundation of China
Subject
Cell Biology,Developmental Biology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献