Production, Optimization, Characterization and Drought Stress Resistance by β-Glucan-Rich Heteropolysaccharide From an Endophytic Fungi Colletotrichum alatae LCS1 Isolated From Clubmoss (Lycopodium clavatum)

Author:

Santra Hiran Kanti,Banerjee Debdulal

Abstract

Endophytic entities are ubiquitous in nature with all-square bioactivity ranging from therapeutic effects toward animals to growth promoting attributes and stress tolerance activities in case of green plants. In the present study, the club moss Lycopodium clavatum for the first time has been subjected for the isolation of endophytic fungi. An exopolysaccharide (EPS) extracted from Colletotrichum alatae LCS1, an endophytic fungi isolated from L. clavatum Linn., was characterized as a β-glucan heteropolymer (composed of mannose, rhamnose, arabinose, glucose, galactose, and fucose) which plays a pivotal role in obliterating the drought stress in rice seedlings (Oryza sativa) when applied at an amount of 20, 50, and 100 ppm. The fresh weight contents of rice tissue (39%), total chlorophyll (33%), proline (41%), soluble sugar content (26%) along with antioxidant enzymes such as catalase, peroxidase, and super-oxide dismutase increased (in comparison to control of non-EPS treated seedlings) while malondialdehyde content had reduced markedly after 30 days of regular treatment. The drought resistance of rice seedling was observed at peak when applied at 50 ppm dosage. Vital parameters for EPS production like fermentation duration (5 days), medium pH (6), nutrient (carbon (glucose-7 g%/l), nitrogen (yeast extract-0.4 g%/l), and mineral (NaCl-0.10 g%/l) sources, oxygen requirements (O2 vector or liquid alkane-n-hexane, n-heptane, n-hexadecane), and headspace volume (250 ml Erlenmeyer flask- 50 ml medium, 200 ml-headspace volume) were optimized to obtain an enhanced EPS yield of 17.38 g/L−59% higher than the preoptimized one. The present study, for the first time, reported the β-glucan rich heteropolysaccharide from Colletotrichum origin which is unique in structure and potent in its function of drought stress tolerance and could enhance the sustainable yield of rice cultivation in areas facing severe drought stress.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3