Predicting sUAS conflicts in the national airspace with interacting multiple models and Haversine-based conflict detection system

Author:

Wells James Z.,Kumar Manish

Abstract

In this paper, a conflict detection system for small Unmanned Aerial Vehicles (sUAS), composed of an interacting multiple model state predictor and a Haversine-distance based conflict detector, is proposed. The conflict detection system was developed and tested via a random recursive simulation in the ROS-Gazebo physics engine environment. The simulation consisted of ten small unmanned aerial vehicles flying along randomly assigned way-point navigation missions within a confined airspace. Way-points are generated from a uniform distribution and then sent to each vehicle. The interacting multiple model state predictor runs on a ground-based system and only has access to current vehicle positional information. It does not have access to the future way-points of individual vehicles. The state predictor is based on Kalman filters that utilize constant velocity, constant acceleration, and constant turn models. It generates near-future position estimates for all vehicles operating within an airspace. These models are probabilistically fused together and projected into the near-future to generate state predictions. These state predictions are then passed to the Haversine distance-based conflict detection algorithm to compare state estimates and identify probable conflicts. The conflicts are detected and flagged based on tunable threshold values which compare distances between predictions for the vehicles operating within the airspace. This paper discusses the development of the random recursive simulation for the ROS-Gazebo framework and the derivation of the interacting multiple model along-with the Haversine-based future conflict detector. The results are presented via simulation to highlight mid-air conflict detection application for sUAS operations in the National Airspace.

Publisher

Frontiers Media SA

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Physics-Based Fault Tolerance Mechanism for UAVs’ Flight Controller;Communications in Computer and Information Science;2024

2. A Machine Learning driven Fault Tolerance Mechanism for UAVs’ Flight Controller;2023 IEEE 28th Pacific Rim International Symposium on Dependable Computing (PRDC);2023-10-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3