Is There a Role for SARS-CoV-2/COVID-19 on the Female Reproductive System?

Author:

D’Ippolito Silvia,Turchiano Francesca,Vitagliano Amerigo,Scutiero Gennaro,Lanzone Antonio,Scambia Giovanni,Greco Pantaleo

Abstract

Coronavirus disease (COVID-19) has emerged as a very serious pandemic caused by the rapidly evolving transmission of the coronavirus SARS-CoV-2. Since its outbreak in 2020, the SARS CoV-2 has represented an important challenge for the physicians due to its well known respiratory sequelae. To date, the role of SARS-CoV-2 infection on organs and systems other than lungs and respiratory tract remains less clear. In particular, it remains to be investigated whether the reproductive system can be affected by the SARS-CoV-2 in the long term-period or, in alternative, drugs used to treat COVID-19 might impact the reproductive systems and, in turn, fertility. What is known is that SARS-Cov-2 binds to target cells of host through different receptors including angiotensin-converting enzyme 2 (ACE2), neuropilin-1, AXL and antibody-FcɣR complexes. ACE2 physiologically regulates both the expression of angiotensin II (Ang II) as well as Ang-(1-7) to exerts its physiological functions. The reproductive system abundantly expresses ACE2 and produces Ang-(1-7), starting from precursors which are locally generated or derived from systemic circulation. Ang-(1-7) plays an important role of stimulus to the growth and maturation of ovarian follicle as well as to ovulation. Also human endometrium expresses Ang-(1-7), mainly during the post-ovulatory phase. Animal and human observational studies demonstrated that Ang-(1-7) is involved in the maternal immune response to pregnancy and its deficiency is associated with a defective placenta development. In our manuscript, we review the current knowledge about whether SARS-CoV-2 may impact the female reproductive system. We further explain the possible molecular mechanism by which SARS-CoV-2 might affect ovarian, endometrial and female genital tract cells.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3