Characterization of sclerostin’s response within white adipose tissue to an obesogenic diet at rest and in response to acute exercise in male mice

Author:

Kurgan Nigel,Baranowski Bradley,Stoikos Joshua,MacNeil Adam J.,Fajardo Val A.,MacPherson Rebecca E. K.,Klentrou Panagiota

Abstract

Introduction: It is well established that sclerostin antagonizes the anabolic Wnt signalling pathway in bone, however, its physiological role in other tissues remains less clear. This study examined the effect of a high-fat diet (HFD) on sclerostin content and downstream markers of the Wnt signaling pathway (GSK3β and β-catenin) within subcutaneous inguinal white adipose tissue (iWAT), and visceral epididymal WAT (eWAT) depots at rest and in response to acute aerobic exercise.Methods: Male C57BL/6 mice (n = 40, 18 weeks of age) underwent 10 weeks of either a low-fat diet (LFD) or HFD. Within each diet group, mice were assigned to either remain sedentary (SED) or perform 2 h of endurance treadmill exercise at 15 m min−1 with 5° incline (EX), creating four groups: LFD + SED (N = 10), LFD + EX (N = 10), HFD + SED (N = 10), and HFD + EX (N = 10). Serum and WAT depots were collected 2 h post-exercise.Results: Serum sclerostin showed a diet-by-exercise interaction, reflecting HFD + EX mice having higher concentration than HFD + SED (+31%, p = 0.03), and LFD mice being unresponsive to exercise. iWAT sclerostin content decreased post-exercise in both 28 kDa (−31%, p = 0.04) and 30 kDa bands (−36%, main effect for exercise, p = 0.02). iWAT β-catenin (+44%, p = 0.03) and GSK3β content were higher in HFD mice compared to LFD (+128%, main effect for diet, p = 0.005). Monomeric sclerostin content was abolished in eWAT of HFD mice (−96%, main effect for diet, p < 0.0001), was only detectable as a 30 kDa band in LFD mice and was unresponsive to exercise. β-catenin and GSK3β were both unresponsive to diet and exercise within eWAT.Conclusion: These results characterized sclerostin’s content to WAT depots in response to acute exercise, which appears to be specific to a reduction in iWAT and identified a differential regulation of sclerostin’s form/post-translational modifications depending on diet and WAT depot.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3