Sleep benefits different stages of memory in Drosophila

Author:

Marquand Katie,Roselli Camilla,Cervantes-Sandoval Isaac,Boto Tamara

Abstract

Understanding the physiological mechanisms that modulate memory acquisition and consolidation remains among the most ambitious questions in neuroscience. Massive efforts have been dedicated to deciphering how experience affects behavior, and how different physiological and sensory phenomena modulate memory. Our ability to encode, consolidate and retrieve memories depends on internal drives, and sleep stands out among the physiological processes that affect memory: one of the most relatable benefits of sleep is the aiding of memory that occurs in order to both prepare the brain to learn new information, and after a learning task, to consolidate those new memories. Drosophila lends itself to the study of the interactions between memory and sleep. The fruit fly provides incomparable genetic resources, a mapped connectome, and an existing framework of knowledge on the molecular, cellular, and circuit mechanisms of memory and sleep, making the fruit fly a remarkable model to decipher the sophisticated regulation of learning and memory by the quantity and quality of sleep. Research in Drosophila has stablished not only that sleep facilitates learning in wild-type and memory-impaired animals, but that sleep deprivation interferes with the acquisition of new memories. In addition, it is well-accepted that sleep is paramount in memory consolidation processes. Finally, studies in Drosophila have shown that that learning itself can promote sleep drive. Nevertheless, the molecular and network mechanisms underlying this intertwined relationship are still evasive. Recent remarkable work has shed light on the neural substrates that mediate sleep-dependent memory consolidation. In a similar way, the mechanistic insights of the neural switch control between sleep-dependent and sleep-independent consolidation strategies were recently described. This review will discuss the regulation of memory by sleep in Drosophila, focusing on the most recent advances in the field and pointing out questions awaiting to be investigated.

Funder

Wellcome

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3