Manipulation of the Fascial System Applied During Acute Inflammation of the Connective Tissue of the Thoracolumbar Region Affects Transforming Growth Factor-β1 and Interleukin-4 Levels: Experimental Study in Mice

Author:

França Maria Elisa Duarte,Sinhorim Larissa,Martins Daniel Fernandes,Schleip Robert,Machado-Pereira Nicolas A. M. M.,de Souza Gabriel Melo,Horewicz Verônica Vargas,Santos Gilmar Moraes

Abstract

Fascia can become rigid and assume a fibrotic pattern due to inflammatory processes. Manipulation of the fascial system (MFS), manual technique targeting connective tissues, is commonly used in clinical practice in pain management. We aimed to verify MFS effects on the connective tissue inflammatory changes in mice. Swiss Mus musculus male mice (n = 44) were distributed into groups: carrageenan without treatment (Car, n = 11), carrageenan with MFS (Car + MFS, n = 12), saline without treatment (n = 10), and saline with MFS (saline + MFS, n = 11). Interleukin 4 (IL-4), IL-6, tumor necrosis factor (TNF), transforming growth factor β1 (TGF-β1), and monocyte chemoattractant protein 1 (MCP-1) levels were verified by enzyme-linked immunosorbent assay. Neutrophil (Ly-6G), macrophage (F4/80), and nitric oxide synthase 2 (NOS-2) were identified using Western blot. The MFS protocol was applied from the first to the third day after inflammation of the connective tissue of the thoracolumbar region. There was a significant MFS effect on IL-4 (p = 0.02) and TGF-β1 (p = 0.04), without increasing MCP-1, TNF, and IL-6 levels (p > 0.05) on thoracolumbar region from Car + MFS, in comparison with saline. Ly-6G in Car + MFS presented lower levels when compared with saline (p = 0.003) or saline + MFS (0.003). NOS-2 levels were lower in Car + MFS than in saline + MFS (p = 0.0195) or saline (p = 0.003). MFS may have an anti-inflammatory effect, based on TGF-β1 and IL-4. IL-4 may have inhibited neutrophil migration. Lower levels of NOS-2 may be linked to the lack of macrophages, which are responsible for NOS-2 expression.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3