Muscle metabolic stress determines cancer cachexia severity in mice

Author:

Alves Christiano,Goodyear Laurie,Brum Patricia

Abstract

Objectives: To determine the metabolic effects of cancer-conditioned media on myotube metabolism and to understand whether the variability of these effects is associated with cancer cachexia progression.Materials and methods: We established single-cell clones from murine Lewis lung carcinoma (LLC) cells and generated conditioned media from each clonal line. Differentiated primary mouse myotubes were incubated with conditioned media derived from each individual clonal cell line. After initial analysis, we selected a specific LLC clonal cell line that failed to induce metabolic stress in myotubes for further investigation in vitro and in vivo.Results: Short-term incubation with conditioned media from 10/34 LLC clonal cells failed to affect oxygen consumption rate (OCR) in myotubes. Incubation with parental LLC-conditioned media decreased protein content and changed the expression of key regulators of muscle function in myotubes, but the incubation of conditioned media from a selected clone that failed to affect OCR in myotubes also did not affect protein content and expression of muscle regulators. Mice injected with parental LLC cells had a significantly reduced body mass and muscle wasting compared to the mice injected with cells derived from this selected LLC clone.Conclusion: Factors secreted by LLC cells induce metabolic stress in primary myotubes and induce cancer cachexia in mice. However, a selected clonal LLC cell line that failed to induce metabolic stress in myotubes also promoted weaker catabolism in mice. These novel findings establish that early disruption of muscle oxidative metabolism is associated with cancer cachexia progression.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3