RGB camera-based simultaneous measurements of percutaneous arterial oxygen saturation, tissue oxygen saturation, pulse rate, and respiratory rate

Author:

Nishidate Izumi,Yasui Riku,Nagao Nodoka,Suzuki Haruta,Takara Yohei,Ohashi Kaoru,Ando Fuminori,Noro Naoki,Kokubo Yasuaki

Abstract

We propose a method to perform simultaneous measurements of percutaneous arterial oxygen saturation (SpO2), tissue oxygen saturation (StO2), pulse rate (PR), and respiratory rate (RR) in real-time, using a digital red–green–blue (RGB) camera. Concentrations of oxygenated hemoglobin (CHbO), deoxygenated hemoglobin (CHbR), total hemoglobin (CHbT), and StO2 were estimated from videos of the human face using a method based on a tissue-like light transport model of the skin. The photoplethysmogram (PPG) signals are extracted from the temporal fluctuations in CHbO, CHbR, and CHbT using a finite impulse response (FIR) filter (low and high cut-off frequencies of 0.7 and 3 Hz, respectively). The PR is calculated from the PPG signal for CHbT. The ratio of pulse wave amplitude for CHbO and that for CHbR are associated with the reference value of SpO2 measured by a commercially available pulse oximeter, which provides an empirical formula to estimate SpO2 from videos. The respiration-dependent oscillation in CHbT was extracted from another FIR filter (low and high cut-off frequencies of 0.05 and 0.5 Hz, respectively) and used to calculate the RR. In vivo experiments with human volunteers while varying the fraction of inspired oxygen were performed to evaluate the comparability of the proposed method with commercially available devices. The Bland–Altman analysis showed that the mean bias for PR, RR, SpO2, and StO2 were -1.4 (bpm), -1.2(rpm), 0.5 (%), and -3.0 (%), respectively. The precisions for PR, RR, Sp O2, and StO2 were ±3.1 (bpm), ±3.5 (rpm), ±4.3 (%), and ±4.8 (%), respectively. The resulting precision and RMSE for StO2 were pretty close to the clinical accuracy requirement. The accuracy of the RR is considered a little less accurate than clinical requirements. This is the first demonstration of a low-cost RGB camera-based method for contactless simultaneous measurements of the heart rate, percutaneous arterial oxygen saturation, and tissue oxygen saturation in real-time.

Funder

Japan Agency for Medical Research and Development

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Reference28 articles.

1. Photoplethysmography and its application in clinical physiological measurement;Allen;Physiol. Meas.,2007

2. Haemoglobin oxygen saturation as a biomarker: The problem and a solution;Boas;Philos. Trans. A Math. Phys. Eng. Sci.,2011

3. Pulse oximeters - premarket notification submissions [510(k)s]: Guidance for industry and Food and Drug administration staff2013

4. Video-based heart rate measurement:recent advances and future prospects;Chen;IEEE Trans. Instrum. Meas.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3