Salinity change evokes stress and immune responses in Atlantic salmon with microalgae showing limited potential for dietary mitigation

Author:

van Muilekom Doret R.,Mueller Jonas,Lindemeyer Jacqueline,Schultheiß Thekla,Maser Edmund,Seibel Henrike,Rebl Alexander,Schulz Carsten,Goldammer Tom

Abstract

Smoltification was found to impact both immune and stress responses of farmed Atlantic salmon (Salmo salar), but little is known about how salinity change affects salmon months after completed smoltification. Here, we examined (1) the effect of salinity change from brackish water to seawater on the stress and immune responses in Atlantic salmon and (2) evaluated if functional diets enriched with microalgae can mitigate stress- and immune-related changes. Groups of Atlantic salmon were fed for 8 weeks with different microalgae-enriched diets in brackish water and were then transferred into seawater. Samples of the head kidney, gill, liver and plasma were taken before seawater transfer (SWT), 20 h after SWT, and 2 weeks after SWT for gene-expression analysis, plasma biochemistry and protein quantification. The salmon showed full osmoregulatory ability upon transfer to seawater reflected by high nkaα1b levels in the gill and tight plasma ion regulation. In the gill, one-third of 44 investigated genes were reduced at either 20 h or 2 weeks in seawater, including genes involved in cytokine signaling (il1b) and antiviral defense (isg15, rsad2, ifit5). In contrast, an acute response after 20 h in SW was apparent in the head kidney reflected by increased plasma stress indicators and induced expression of genes involved in acute-phase response (drtp1), antimicrobial defense (camp) and stress response (hspa5). However, after 2 weeks in seawater, the expression of antiviral genes (isg15, rsad2, znfx1) was reduced in the head kidney. Few genes (camp, clra, c1ql2) in the gill were downregulated by a diet with 8% inclusion of Athrospira platensis. The results of the present study indicate that salinity change months after smoltification evokes molecular stress- and immune responses in Atlantic salmon. However, microalgae-enriched functional diets seem to have only limited potential to mitigate the related changes.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3