Concurrent Evolution of Biomechanical and Physiological Parameters With Running-Induced Acute Fatigue

Author:

Prigent Gäelle,Apte Salil,Paraschiv-Ionescu Anisoara,Besson Cyril,Gremeaux Vincent,Aminian Kamiar

Abstract

Understanding the influence of running-induced acute fatigue on the homeostasis of the body is essential to mitigate the adverse effects and optimize positive adaptations to training. Fatigue is a multifactorial phenomenon, which influences biomechanical, physiological, and psychological facets. This work aimed to assess the evolution of these three facets with acute fatigue during a half-marathon. 13 recreational runners were equipped with one inertial measurement unit (IMU) on each foot, one combined global navigation satellite system-IMU-electrocardiogram sensor on the chest, and an Android smartphone equipped with an audio recording application. Spatio-temporal parameters for the running gait, along with the heart rate, its variability and complexity were computed using validated algorithms. Perceived fatigability was assessed using the rating-of-fatigue (ROF) scale at every 10 min of the race. The data was split into eight equal segments, corresponding to at least one ROF value per segment, and only level running parts were retained for analysis. During the race, contact time, duty factor, and trunk anteroposterior acceleration increased, and the foot strike angle and vertical stiffness decreased significantly. Heart rate showed a progressive increase, while the metrics for heart rate variability and complexity decreased during the race. The biomechanical parameters showed a significant alteration even with a small change in perceived fatigue, whereas the heart rate dynamics altered at higher changes. When divided into two groups, the slower runners presented a higher change in heart rate dynamics throughout the race than the faster runners; they both showed similar trends for the gait parameters. When tested for linear and non-linear correlations, heart rate had the highest association with biomechanical parameters, while the trunk anteroposterior acceleration had the lowest association with heart rate dynamics. These results indicate the ability of faster runners to better judge their physiological limits and hint toward a higher sensitivity of perceived fatigue to neuromuscular changes in the running gait. This study highlights measurable influences of acute fatigue, which can be studied only through concurrent measurement of biomechanical, physiological, and psychological facets of running in real-world conditions.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Reference86 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3