Deadly scents: Exposure to plant volatiles increases mortality of entomopathogenic nematodes during infection

Author:

Gaffke Alexander M.,Shapiro-Ilan David,Alborn Hans T.

Abstract

Plants attacked by insects commonly mobilize various defense mechanisms, including the biosynthesis and release of so-called herbivore-induced plant volatiles (HIPVs). Entomopathogenic nematodes (EPNs) can be attracted to these belowground HIPVs, which can enhance biocontrol services from EPNs. However, recent research has also demonstrated that HIPVs can induce and initiate insect immune responses, decreasing the insect’s susceptibility to pathogens and parasites. Therefore, experiments were conducted to test the impact of HIPVs on insects and EPNs during the initial stage of EPN infection. Compounds that can impact EPN attraction and infectivity such as pregeijerene, β-caryophyllene, and α-pinene, and compounds that have been determined to increase or decrease susceptibility of insects to pathogens, such as (Z)-3-hexenyl acetate, linalool, and β-ocimene, were selected. Exposure of Galleria mellonella larvae to pregeijerene, linalool, β-ocimene and α-pinene during invasion significantly increased mortality of Steinernema diaprepesi and Heterorhabditis bacteriophora after 48 h. Larval treatment with β-caryophyllene only increased mortality for Heterorhabditis bacteriophora. (Z)-3-hexenyl acetate did not cause differential mortality from the controls for either nematode species. In additional experiments, we found that EPNs exposed to α-pinene and linalool were more readily recognized by the insects’ immune cells compared to the control treatment, thus the observed increased mortality was likely due to HIPVs-EPN interactions with the insect’s immune system. These results show that the presence of HIPVs can impact EPN survival in the model host, G. mellonella.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Reference29 articles.

1. Subterranean, herbivore-induced plant volatile increases biological control activity of multiple beneficial nematode species in distinct habitats;Ali;PLoS One,2012

2. The effect of linalool on second-stage juveniles of the potato cyst nematodes Globodera rostochiensis and G. pallida;Būda;J. Nematol.,2011

3. Dangerous liaisons: The symbiosis of entomopathogenic nematodes and bacteria;Ciche;Biol. Control,2006

4. For the insect pathogen photorhabdus luminescens , which end of a nematode is out?;Ciche;Appl. Environ. Microbiol.,2003

5. Southern highbush blueberry response to mulch;Clark;horttech,1991

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3