Fat oxidation rates and cardiorespiratory responses during exercise in different subject populations with post-acute sequelae of SARS-CoV-2 infection: a comparison with normative percentile values

Author:

Meloni Andrea,Codella Roberto,Gotti Daniel,Di Gennaro Simone,Luzi Livio,Filipas Luca

Abstract

Introduction: Post-acute sequelae of SARS-CoV-2 infection (PASC) presents a spectrum of symptoms following acute COVID-19, with exercise intolerance being a prevalent manifestation likely linked to disrupted oxygen metabolism and mitochondrial function. This study aims to assess maximal fat oxidation (MFO) and exercise intensity at MFO (FATmax) in distinct PASC subject groups and compare these findings with normative data.Methods: Eight male subjects with PASC were involved in this study. The participants were divided into two groups: “endurance-trained” subjects (V˙O2max > 55 mL/min/kg) and “recreationally active” subjects (V˙O2max < 55 mL/min/kg). Each subject performed a graded exercise test until maximal oxygen consumption (V˙O2max) to measure fat oxidation. Subsequently, MFO was assessed, and FATmax was calculated as the ratio between V˙O2 at MFO and V˙O2 max.Results: The MFO and FATmax of “endurance-trained” subjects were 0.85, 0.89, 0.71, and 0.42 and 68%, 69%, 64%, and 53%, respectively. Three out of four subjects showed both MFO and FATmax values placed over the 80th percentile of normative data. The MFO and FATmax of “recreationally active” subjects were 0.34, 0.27, 0.35, and 0.38 and 47%, 39%, 43%, and 41%, respectively. All MFO and FATmax values of those subjects placed below the 20th percentile or between the 20th and 40th percentile.Discussion: Significant differences in MFO and FATmax values between ‘endurance-trained’ and “recreationally active” subjects suggest that specific endurance training, rather than simply an active lifestyle, may provide protective effects against alterations in mitochondrial function during exercise in subjects with PASC.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3