Effects of short-term hyperoxemia on cerebral autoregulation and tissue oxygenation in acute brain injured patients

Author:

Ciliberti Pietro,Cardim Danilo,Giardina Alberto,Groznik Matjaž,Ball Lorenzo,Giovannini Martina,Battaglini Denise,Beqiri Erta,Matta Basil,Smielewski Peter,Czosnyka Marek,Pelosi Paolo,Robba Chiara

Abstract

Introduction: Potential detrimental effects of hyperoxemia on outcomes have been reported in critically ill patients. Little evidence exists on the effects of hyperoxygenation and hyperoxemia on cerebral physiology. The primary aim of this study is to assess the effect of hyperoxygenation and hyperoxemia on cerebral autoregulation in acute brain injured patients. We further evaluated potential links between hyperoxemia, cerebral oxygenation and intracranial pressure (ICP).Methods: This is a single center, observational, prospective study. Acute brain injured patients [traumatic brain injury (TBI), subarachnoid hemorrhage (SAH), intracranial hemorrhage (ICH)] undergoing multimodal brain monitoring through a software platform (ICM+) were included. Multimodal monitoring consisted of invasive ICP, arterial blood pressure (ABP) and near infrared spectrometry (NIRS). Derived parameters of ICP and ABP monitoring included the pressure reactivity index (PRx) to assess cerebral autoregulation. ICP, PRx, and NIRS-derived parameters (cerebral regional saturation of oxygen, changes in concentration of regional oxy- and deoxy-hemoglobin), were evaluated at baseline and after 10 min of hyperoxygenation with a fraction of inspired oxygen (FiO2) of 100% using repeated measures t-test or paired Wilcoxon signed-rank test. Continuous variables are reported as median (interquartile range).Results: Twenty-five patients were included. The median age was 64.7 years (45.9–73.2), and 60% were male. Thirteen patients (52%) were admitted for TBI, 7 (28%) for SAH, and 5 (20%) patients for ICH. The median value of systemic oxygenation (partial pressure of oxygen-PaO2) significantly increased after FiO2 test, from 97 (90–101) mm Hg to 197 (189–202) mm Hg, p < 0.0001. After FiO2 test, no changes were observed in PRx values (from 0.21 (0.10–0.43) to 0.22 (0.15–0.36), p = 0.68), nor in ICP values (from 13.42 (9.12–17.34) mm Hg to 13.34 (8.85–17.56) mm Hg, p = 0.90). All NIRS-derived parameters reacted positively to hyperoxygenation as expected. Changes in systemic oxygenation and the arterial component of cerebral oxygenation were significantly correlated (respectively ΔPaO2 and ΔO2Hbi; r = 0.49 (95% CI = 0.17–0.80).Conclusion: Short-term hyperoxygenation does not seem to critically affect cerebral autoregulation.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3