Anti-aging effect of glycerophosphocholine in Steinernema kraussei 0657L

Author:

Li Xi-Tong,Qian Xiu-Juan,Chen Hong,Wang Xing-Duo,Wu Xia

Abstract

Glycerophosphocholine (GPC) is a water-soluble small molecule found naturally in humans and foods such as milk and soybeans. It can activate the IIS pathway by regulating the expression of daf-2, ins-18 and daf-16 genes, sek-1 and skn-1 genes of MAPK pathway, sod-3, ctl-1, gst-4 and other antioxidant genes. GPC can relieve symptoms related to aging in organisms. The aim of this study was to probe the effects of GPC on the longevity and stress resistance of the entomopathogenic nematode (EPN) Steinernema kraussei 0657L strain. The results showed that the lifespan of S. kraussei 0657L was significantly prolonged by 50 mM GPC treatment, which was 54.55% longer than that of the control (0 mM GPC). GPC significantly inhibited reactive oxygen species (ROS) and lipofuscin accumulation, but the body size and fecundity of S. kraussei 0657L had little changed. At the same time, the longevity of S. kraussei 0657L exposed to heat shock and UV-B radiation was significantly prolonged than that with no external stress. GPC supplementation increased the activity of antioxidant enzymes and corresponding gene expression. Under treatment with 50 mM GPC, the activities of superoxide dismutase and catalase were increased by 1.90- and 4.13-fold, respectively, the expression of the sod-3 and ctl-1 genes was increased by 3.60- and 0.60-fold, respectively, and harmful reactive oxygen species were removed. In addition, the expression levels of the ins-18, skn-1, sek-1 and gst-4 genes related to the insulin/IGF-1 signaling pathway were upregulated 1.04-, 1.84-, 2.21- and 1.24-fold, respectively. These results indicate that GPC is mainly involved in the lifespan regulation of S. kraussei 0657L and plays an important role in resistance to external stress by activating the insulin/IGF-1 signaling pathway and downstream PI3K/MAPK kinase, creating a new idea for improving the commercial efficacy of S. kraussei. It also laid a theoretical foundation for its further efficient development and utilization in the field of biological control.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Science and Technology Plan Projects of Tibet Autonomous Region

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3