Gain control in olfactory receptor neurons and the detection of temporal fluctuations in odor concentration

Author:

Tichy Harald,Hellwig Maria

Abstract

The ability of the cockroach to locate an odor source in still air suggests that the temporal dynamic of odor concentration in the slowly expanding stationary plume alone is used to infer odor source distance and location. This contradicts with the well-established view that insects use the wind direction as the principle directional cue. This contribution highlights the evidence for, and likely functional relevance of, the capacity of the cockroach’s olfactory receptor neurons to detect and process—from one moment to the next—not only a succession of odor concentrations but also the rates at which concentration changes. This presents a challenge for the olfactory system because it must detect and encode the temporal concentration dynamic in a manner that simultaneously allows invariant odor recognition. The challenge is met by a parallel representation of odor identity and concentration changes in a dual pathway that starts from olfactory receptor neurons located in two morphologically distinct types of olfactory sensilla. Parallel processing uses two types of gain control that simultaneously allocate different weight to the instantaneous odor concentration and its rate of change. Robust gain control provides a stable sensitivity for the instantaneous concentration by filtering the information on fluctuations in the rate of change. Variable gain control, in turn, enhances sensitivity for the concentration rate according to variations in the duration of the fluctuation period. This efficiently represents the fluctuation of concentration changes in the environmental context in which such changes occur.

Funder

Austrian Science Fund

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parallel olfactory processing in a hemimetabolous insect;Current Opinion in Insect Science;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3