Effectiveness, implementation, and monitoring variables of intermittent hypoxic bicycle training in patients recovered from COVID-19: The AEROBICOVID study

Author:

Costa Gabriel Peinado,Camacho-Cardenosa Alba,Brazo-Sayavera Javier,Viliod Marcela Coffacci De Lima,Camacho-Cardenosa Marta,Foresti Yan Figueiredo,Carvalho Carlos Dellavechia de,Merellano-Navarro Eugenio,Papoti Marcelo,Trapé Átila Alexandre

Abstract

Hypoxic exposure is safely associated with exercise for many pathological conditions, providing additional effects on health outcomes. COVID-19 is a new disease, so the physiological repercussions caused by exercise in affected patients and the safety of exposure to hypoxia in these conditions are still unknown. Due to the effects of the disease on the respiratory system and following the sequence of AEROBICOVID research work, this study aimed to evaluate the effectiveness, tolerance and acute safety of 24 bicycle training sessions performed under intermittent hypoxic conditions through analysis of peripheral oxyhemoglobin saturation (SpO2), heart rate (HR), rate of perceived exertion (RPE), blood lactate concentration ([La]) and symptoms of acute mountain sickness in patients recovered from COVID-19. Participants were allocated to three training groups: the normoxia group (GN) remained in normoxia (inspired fraction of O2 (FiO2) of ∼20.9%, a city with 526 m altitude) for the entire session; the recovery hypoxia group (GHR) was exposed to hypoxia (FiO2 ∼13.5%, corresponding to 3,000 m altitude) all the time except during the effort; the hypoxia group (GH) trained in hypoxia (FiO2 ∼13.5%) throughout the session. The altitude simulation effectively reduced SpO2 mean with significant differences between groups GN, GHR, and GH, being 96.9(1.6), 95.1(3.1), and 87.7(6.5), respectively. Additionally, the proposed exercise and hypoxic stimulus was well-tolerated, since 93% of participants showed no or moderate acute mountain sickness symptoms; maintained nearly 80% of sets at target heart rate; and most frequently reporting session intensity as an RPE of “3” (moderate). The internal load calculation, analyzed through training impulse (TRIMP), calculated using HR [TRIMPHR = HR * training volume (min)] and RPE [TRIMPRPE = RPE * training volume (min)], showed no significant difference between groups. The current strategy effectively promoted the altitude simulation and monitoring variables, being well-tolerated and safely acute exposure, as the low Lake Louise scores and the stable HR, SpO2, and RPE values showed during the sessions.

Funder

Universidade de São Paulo

Pro-Reitoria de Pesquisa, Universidade de São Paulo

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3