Increased oxygen uptake in well-trained runners during uphill high intensity running intervals: A randomized crossover testing

Author:

Held Steffen,Rappelt Ludwig,Giesen René,Wiedenmann Tim,Deutsch Jan-Philip,Wicker Pamela,Donath Lars

Abstract

The time spent above 90% of maximal oxygen uptake (V̇O2max) during high-intensity interval training (HIIT) sessions is intended to be maximized to improve V̇O2max. Since uphill running serves as a promising means to increase metabolic cost, we compared even and moderately inclined running in terms of time ≥90% V̇O2max and its corresponding physiological surrogates. Seventeen well-trained runners (8 females & 9 males; 25.8 ± 6.8yrs; 1.75 ± 0.08m; 63.2 ± 8.4kg; V̇O2max: 63.3 ± 4.2 ml/min/kg) randomly completed both a horizontal (1% incline) and uphill (8% incline) HIIT protocol (4-times 5min, with 90s rest). Mean oxygen uptake (V̇O2mean), peak oxygen uptake (V̇O2peak), lactate, heart rate (HR), and perceived exertion (RPE) were measured. Uphill HIIT revealed higher (p ≤ 0.012; partial eta-squared (pes) ≥ 0.351) V̇O2mean (uphill: 3.3 ± 0.6 vs. horizontal: 3.2 ± 0.5 L/min; standardized mean difference (SMD) = 0.15), V̇O2peak (uphill: 4.0 ± 0.7 vs. horizontal: 3.8 ± 0.7 L/min; SMD = 0.19), and accumulated time ≥90% V̇O2max (uphill: 9.1 ± 4.6 vs. horizontal: 6.4 ± 4.0 min; SMD = 0.62) compared to even HIIT. Lactate, HR, and RPE responses did not show mode*time rANOVA interaction effects (p ≥ 0.097; pes ≤0.14). Compared to horizontal HIIT, moderate uphill HIIT revealed higher fractions of V̇O2max at comparable perceived efforts, heartrate and lactate response. Therefore, moderate uphill HiiT notably increased time spent above 90% V̇O2max.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3