Changing Oar Rotation Axis Position Increases Catch Angle During Indoor and In-Field Para-Rowing: A Randomized Crossover Trial Verified by a Repeated Measurement Trial

Author:

Held Steffen,Rappelt Ludwig,Wicker Pamela,Donath Lars

Abstract

A long rowing stroke length is crucial for adequate rowing performance. Therefore, the relocation of the oar from traditional “in front” (NORM) to “behind the rotation axis” (GATE) may increase (para) rowing performance. Thus, 15 able-bodied rowers (21.4 ± 3.6 years; 187 ± 8 cm; 85.4 ± 8.2 kg) completed indoor TANK rowing 2 min TimeTrials (2 min-TT) of GATE and NORM in a randomized order. Additionally, one elite Paralympic oarsman (37 years, 185 cm, 67 kg) performed a multiple single case in-field BOAT testing (24x2min-TT of GATE and NORM in a randomized order). GATE revealed significantly larger catch angles during TANK (+97.1 ± 120.4%; p = 0.001, SMD = 0.84) and BOAT (+11.9 ± 3.2%; p < 0.021; SMD = 2.69; Tau-U = 0.70) compared to NORM. While total stroke length, rowing power, and work per stroke increased in GATE during TANK (p < 0.010, SMD > 0.634), no such significant changes of these performance parameters between GATE and NORM were observed during BOAT (p > 0.021; SMD < 0.58; Tau-U < 0.29). Rowing economy-related parameters (power or speed per oxygen uptake) and boat speed also showed no significant differences between GATE und NORM during BOAT (p > 0.61; SMD < 0.31; Tau-U < 0.19). The shape of the force–angle curve (position of peak force and ratio between average and maximal force) remained unaffected from GATE during both TANK (p > 0.73, SMD < 0.1) and BOAT (p > 0.63; SMD < 0.60; Tau-U < 0.27). In conclusion, GATE shifted the entire rowing stroke towards the catch (+6.6 ± 1.8°) without notably affecting relevant performance parameters during BOAT. Particularly during crew rowing, the minimization of detrimental boat movements for perfect synchrony should be aimed for. Accordingly, the combined application of GATE and NORM (for different athletes in crew boats) may be beneficial for rowing synchronization.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Reference23 articles.

1. Investigation of biomechanical factors affecting rowing performance;Baudouin;J. Biomech.,2004

2. Rocking the boat: does perfect rowing crew synchronization reduce detrimental boat movements?;Cuijpers;Scand. J. Med. Sci. Sports,2017

3. Comparing Para-rowing set-ups on an ergometer using kinematic movement patterns of able-bodied rowers;Cutler;J. Sports Sci.,2017

4. Basic Physics of Rowing. Oxford University Atmospheric, Oceanic and Planetary Physics;Dudhia,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3