Transcriptome and co-expression network analysis reveals the molecular mechanism of inosine monophosphate-specific deposition in chicken muscle

Author:

Yu Baojun,Cai Zhengyun,Liu Jiamin,Zhao Wei,Fu Xi,Gu Yaling,Zhang Juan

Abstract

The inosine monophosphate (IMP) content in chicken meat is closely related to muscle quality and is an important factor affecting meat flavor. However, the molecular regulatory mechanisms underlying the IMP-specific deposition in muscle remain unclear. This study performed transcriptome analysis of muscle tissues from different parts, feeding methods, sexes, and breeds of 180-day-old Jingyuan chickens, combined with differential expression and weighted gene co-expression network analysis (WGCNA), to identify the functional genes that regulate IMP deposition. Out of the four comparison groups, 1,775, 409, 102, and 60 differentially expressed genes (DEGs) were identified, of which PDHA2, ACSS2, PGAM1, GAPDH, PGM1, GPI, and TPI1 may be involved in the anabolic process of muscle IMP in the form of energy metabolism or amino acid metabolism. WGCNA identified 11 biofunctional modules associated with IMP deposition. The brown, midnight blue, red, and yellow modules were strongly correlated with IMP and cooking loss (p < 0.05). Functional enrichment analysis showed that glycolysis/gluconeogenesis, arginine and proline metabolism, and pyruvate metabolism, regulated by PYCR1, SMOX, and ACSS2, were necessary for muscle IMP-specific deposition. In addition, combined analyses of DEGs and four WGCNA modules identified TGIF1 and THBS1 as potential candidate genes affecting IMP deposition in muscle. This study explored the functional genes that regulate muscle development and IMP synthesis from multiple perspectives, providing an important theoretical basis for improving the meat quality and molecular breeding of Jingyuan chickens.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Reference63 articles.

1. The thrombospondins;Adams;Cold Spring Harb. Perspect. Biol.,2011

2. Increased mitochondrial proline metabolism sustains proliferation and survival of colorectal cancer cells;Alaqbi;PLoS One,2022

3. Candidate gene AMPD1, ADSL, and ATIC of meat quality and flavor in chicken;Bao;China Animal Husb. Veterinary Med.,2008

4. Network biology: Understanding the cell's functional organization;Barabasi;Nat. Rev. Genet.,2004

5. A Wnt-TGFβ2 axis induces a fibrogenic program in muscle stem cells from dystrophic mice;Biressi;Sci. Transl. Med.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3