Machine learning and reduced order modelling for the simulation of braided stent deployment

Author:

Bisighini Beatrice,Aguirre Miquel,Biancolini Marco Evangelos,Trovalusci Federica,Perrin David,Avril Stéphane,Pierrat Baptiste

Abstract

Endoluminal reconstruction using flow diverters represents a novel paradigm for the minimally invasive treatment of intracranial aneurysms. The configuration assumed by these very dense braided stents once deployed within the parent vessel is not easily predictable and medical volumetric images alone may be insufficient to plan the treatment satisfactorily. Therefore, here we propose a fast and accurate machine learning and reduced order modelling framework, based on finite element simulations, to assist practitioners in the planning and interventional stages. It consists of a first classification step to determine a priori whether a simulation will be successful (good conformity between stent and vessel) or not from a clinical perspective, followed by a regression step that provides an approximated solution of the deployed stent configuration. The latter is achieved using a non-intrusive reduced order modelling scheme that combines the proper orthogonal decomposition algorithm and Gaussian process regression. The workflow was validated on an idealized intracranial artery with a saccular aneurysm and the effect of six geometrical and surgical parameters on the outcome of stent deployment was studied. We trained six machine learning models on a dataset of varying size and obtained classifiers with up to 95% accuracy in predicting the deployment outcome. The support vector machine model outperformed the others when considering a small dataset of 50 training cases, with an accuracy of 93% and a specificity of 97%. On the other hand, real-time predictions of the stent deployed configuration were achieved with an average validation error between predicted and high-fidelity results never greater than the spatial resolution of 3D rotational angiography, the imaging technique with the best spatial resolution (0.15 mm). Such accurate predictions can be reached even with a small database of 47 simulations: by increasing the training simulations to 147, the average prediction error is reduced to 0.07 mm. These results are promising as they demonstrate the ability of these techniques to achieve simulations within a few milliseconds while retaining the mechanical realism and predictability of the stent deployed configuration.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3