Author:
Yamaguchi Hiroyuki,Kitami Kohei,Wu Xiao,He Li,Wang Jianbo,Wang Bin,Komatsu Yoshihiro
Abstract
Cleft palate is one of the most common craniofacial birth defects, however, little is known about how changes in the DNA damage response (DDR) cause cleft palate. To determine the role of DDR during palatogenesis, the DDR process was altered using a pharmacological intervention approach. A compromised DDR caused by a poly (ADP-ribose) polymerase (PARP) enzyme inhibitor resulted in cleft palate in wild-type mouse embryos, with increased DNA damage and apoptosis. In addition, a mouse genetic approach was employed to disrupt breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2), known as key players in DDR. An ectomesenchymal-specific deletion ofBrca1orBrca2resulted in cleft palate due to attenuation of cell survival. This was supported by the phenotypes of the ectomesenchymal-specificBrca1/Brca2double-knockout mice. The cleft palate phenotype was rescued by superimposing p53 null alleles, demonstrating that the BRCA1/2–p53 DDR pathway is critical for palatogenesis. Our study highlights the importance of DDR in palatogenesis.
Funder
National Institute of Dental and Craniofacial Research
Plan National Cancer
Uehara Memorial Foundation
Subject
Physiology (medical),Physiology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献