A smart IoMT based architecture for E-healthcare patient monitoring system using artificial intelligence algorithms

Author:

A Ahila,Dahan Fadl,Alroobaea Roobaea,Alghamdi Wael. Y.,Mustafa Khaja Mohammed ,Hajjej Fahima,Deema mohammed alsekait ,Raahemifar Kaamran

Abstract

Generally, cloud computing is integrated with wireless sensor network to enable the monitoring systems and it improves the quality of service. The sensed patient data are monitored with biosensors without considering the patient datatype and this minimizes the work of hospitals and physicians. Wearable sensor devices and the Internet of Medical Things (IoMT) have changed the health service, resulting in faster monitoring, prediction, diagnosis, and treatment. Nevertheless, there have been difficulties that need to be resolved by the use of AI methods. The primary goal of this study is to introduce an AI-powered, IoMT telemedicine infrastructure for E-healthcare. In this paper, initially the data collection from the patient body is made using the sensed devices and the information are transmitted through the gateway/Wi-Fi and is stored in IoMT cloud repository. The stored information is then acquired, preprocessed to refine the collected data. The features from preprocessed data are extracted by means of high dimensional Linear Discriminant analysis (LDA) and the best optimal features are selected using reconfigured multi-objective cuckoo search algorithm (CSA). The prediction of abnormal/normal data is made by using Hybrid ResNet 18 and GoogleNet classifier (HRGC). The decision is then made whether to send alert to hospitals/healthcare personnel or not. If the expected results are satisfactory, the participant information is saved in the internet for later use. At last, the performance analysis is carried so as to validate the efficiency of proposed mechanism.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Reference35 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Oscillometry in Lung Function Assessment: A Comprehensive Review of Current Insights and Challenges;Cureus;2023-10-29

2. IoMT-Enabled Wearable Sensors for Continuous Glucose Monitoring in Diabetes Management;2023 International Conference on Self Sustainable Artificial Intelligence Systems (ICSSAS);2023-10-18

3. Distributed Deep Learning for Smart IoMT Challenges in the Healthcare Domain;Scalable and Distributed Machine Learning and Deep Learning Patterns;2023-06-02

4. Utilizing behavioral deep learning models to monitoar and alert physicians regarding trauma cases;Journal of Information and Optimization Sciences;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3