Effects of Acute Exposure to Polystyrene Nanoplastics on the Channel Catfish Larvae: Insights From Energy Metabolism and Transcriptomic Analysis

Author:

Jiang Qichen,Chen Xiaohui,Jiang Hucheng,Wang Minghua,Zhang Tongqing,Zhang Wenyi

Abstract

Microplastics (nanoplastics) pollution has been a major ecological issue threatening global aquatic ecosystems. However, knowledge of the adverse effects of nanoplastics and the effects on freshwater ecosystems is still limited. To understand the impacts of nanoplastics on freshwater ecosystems, it is essential to reveal the physiological changes caused by nanoplastics in freshwater organisms, especially at their early life-history stages. In the present study, the larval channel catfish Ietalurus punetaus were exposed to gradient concentrations (0, 5, 10, 25, and 50 mg/L) of 75-nm polystyrene nanoplastics (PS-NPs) for 24 h or 48 h, and changes in contents of energy metabolites, metabolic enzyme activities and transcriptome were assessed. The results showed that glucose and triglyceride contents increased after 24 h of exposure to 10 or 25 mg/L of PS-NPs but decreased with increased concentrations or prolonged exposure duration. Activities of most metabolic enzymes analyzed decreased in the larvae after 48 h of exposure, especially in 25 or 50 mg/L of PS-NPs. These suggested that PS-NPs caused huge energy consumption and disturbed the energy metabolism in larval fish. Transcriptomic analysis showed that 48 h of exposure to 50 mg/L PS-NPs affected the expression of genes involved in protein digestion and induced response of proteasomes or heat shock proteins in the larval I. punetaus. The genes involved in peroxisome proliferator-activated receptors (PPAR) pathway and biosynthesis of amino acids were activated after the exposure. PS-NPs also depressed the expression of the genes involved in gonad development or muscle contraction in the larval I. punetaus. Overall, acute exposure to 75-nm PS-NPs disrupted the energy metabolism by consuming the energy reserves, and affected a series of molecular pathways which may further affect the development and survival of fish. This study provided the information about adverse effects of nanoplastics on the fish larvae and revealed the molecular pathways for the potential adverse outcomes.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3