The effects of operating height and the passage of time on the end-point performance of fine manipulative tasks that require high accuracy

Author:

Choi Ho Seon,In Hyunki

Abstract

Sustained shoulder abduction, which results from an inappropriate worktable height or tool shape and long task hours, leads to an accumulation of muscle fatigue and subsequent work-related injuries in workers. It can be alleviated by controlling the table height or ergonomic tool design, but workers who are doing some types of work that require a discomfortable posture, such as minimally invasive surgery, cannot avoid these situations. Loads to the shoulder joint or muscles result in several problems, such as muscle fatigue, deterioration of proprioception or changing movement strategies of the central nervous system, and these are critical to work that requires a high accuracy of the upper extremities. Therefore, in this paper, we designed and conducted an experiment with human participants to discuss how an inappropriate height of the work-table affects the task performance of workers who are performing a fine manipulative task that requires high accuracy of the end point. We developed an apparatus that can control the height and has four touch screens to evaluate the end-point accuracy with two different heights. Eighteen adults (9 women and 9 men) participated in the experiments, and the electromyography of their shoulder muscles, their movement stability, and task performance were measured for the analysis. We found that inappropriate height of a table brings about muscle fatigue, and time elapsed for conducting tasks accelerated the phenomenon. Task performance deteriorated according to increased fatigue, and improved movement stability is not enough to compensate for these situations.

Funder

Korea Institute of Science and Technology

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3