Predicting VO2max in competitive cyclists: Is the FRIEND equation the optimal choice?

Author:

Jurov Iva,Cvijić Marta,Toplišek Janez

Abstract

Predicting VO2max in athletes is vital for determining endurance capacity, for performance monitoring, in clinical diagnostic procedures, and for disease management. This study aimed to assess the most suitable equation for predicting VO2max in competitive cyclists. Competitive cyclists (496 males, 84 females, Caucasian, 580 total) were included in the study from 1 January 2014 to 31 December 2019. Only subjects who were actively participating in national or international competitions and who were registered competitive cyclists and part of cycling teams at the time of the measurements were included. Subjects performed an incremental test on a cycle ergometer, and VO2max was measured as indicated by a plateau in VO2. In addition, four prediction equations (the FRIEND, Storer, Fairbarn, and Jones) were used to estimate VO2max. The predicted VO2max using the FRIEND equation was in good agreement with the measured VO2max in male and female athletes. This was reflected by a high correlation with r = 0.684 for men and r = 0.897 for women (p = 0.000), with ICC = 0.568 (95% CI 0.184, 0.752) for men and ICC = 0.881 (95% CI 0.813, 0.923) for women. Total error was 1.56 and 1.48 ml/min/kg and a minimal bias of−3.6 and −1.1 ml/min/kg (men and women, respectively). Using other equations resulted in a slight decline in agreement with the measured standard. The FRIEND equation predicted VO2max accurately with small total error, small prediction errors, and with the smallest constant error in our study cohort, indicating the potential value of using FRIEND equation also in competitive cyclists. This equation proved to have the highest accuracy both in male and female cyclists.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3