Practical Lessons on 12-Lead ECG Classification: Meta-Analysis of Methods From PhysioNet/Computing in Cardiology Challenge 2020

Author:

Hong Shenda,Zhang Wenrui,Sun Chenxi,Zhou Yuxi,Li Hongyan

Abstract

Cardiovascular diseases (CVDs) are one of the most fatal disease groups worldwide. Electrocardiogram (ECG) is a widely used tool for automatically detecting cardiac abnormalities, thereby helping to control and manage CVDs. To encourage more multidisciplinary researches, PhysioNet/Computing in Cardiology Challenge 2020 (Challenge 2020) provided a public platform involving multi-center databases and automatic evaluations for ECG classification tasks. As a result, 41 teams successfully submitted their solutions and were qualified for rankings. Although Challenge 2020 was a success, there has been no in-depth methodological meta-analysis of these solutions, making it difficult for researchers to benefit from the solutions and results. In this study, we aim to systematically review the 41 solutions in terms of data processing, feature engineering, model architecture, and training strategy. For each perspective, we visualize and statistically analyze the effectiveness of the common techniques, and discuss the methodological advantages and disadvantages. Finally, we summarize five practical lessons based on the aforementioned analysis: (1) Data augmentation should be employed and adapted to specific scenarios; (2) Combining different features can improve performance; (3) A hybrid design of different types of deep neural networks (DNNs) is better than using a single type; (4) The use of end-to-end architectures should depend on the task being solved; (5) Multiple models are better than one. We expect that our meta-analysis will help accelerate the research related to ECG classification based on machine-learning models.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3