Neural network-based estimation of biomechanical vocal fold parameters

Author:

Donhauser Jonas,Tur Bogac,Döllinger Michael

Abstract

Vocal fold (VF) vibrations are the primary source of human phonation. High-speed video (HSV) endoscopy enables the computation of descriptive VF parameters for assessment of physiological properties of laryngeal dynamics, i.e., the vibration of the VFs. However, underlying biomechanical factors responsible for physiological and disordered VF vibrations cannot be accessed. In contrast, physically based numerical VF models reveal insights into the organ’s oscillations, which remain inaccessible through endoscopy. To estimate biomechanical properties, previous research has fitted subglottal pressure-driven mass–spring–damper systems, as inverse problem to the HSV-recorded VF trajectories, by global optimization of the numerical model. A neural network trained on the numerical model may be used as a substitute for computationally expensive optimization, yielding a fast evaluating surrogate of the biomechanical inverse problem. This paper proposes a convolutional recurrent neural network (CRNN)-based architecture trained on regression of a physiological-based biomechanical six-mass model (6 MM). To compare with previous research, the underlying biomechanical factor “subglottal pressure” prediction was tested against 288 HSV ex vivo porcine recordings. The contributions of this work are two-fold: first, the presented CRNN with the 6 MM handles multiple trajectories along the VFs, which allows for investigations on local changes in VF characteristics. Second, the network was trained to reproduce further important biomechanical model parameters like VF mass and stiffness on synthetic data. Unlike in a previous work, the network in this study is therefore an entire surrogate of the inverse problem, which allowed for explicit computation of the fitted model using our approach. The presented approach achieves a best-case mean absolute error (MAE) of 133 Pa (13.9%) in subglottal pressure prediction with 76.6% correlation on experimental data and a re-estimated fundamental frequency MAE of 15.9 Hz (9.9%). In-detail training analysis revealed subglottal pressure as the most learnable parameter. With the physiological-based model design and advances in fast parameter prediction, this work is a next step in biomechanical VF model fitting and the estimation of laryngeal kinematics.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3