Assessment of Stiffness of Large to Small Arteries in Multistage Renal Disease Model: A Numerical Study

Author:

Obeid Hasan,Bikia Vasiliki,Fortier Catherine,Paré Mathilde,Segers Patrick,Stergiopulos Nikos,Agharazii Mohsen

Abstract

Arterial stiffness (AS), as assessed via pulse wave velocity (PWV), is a major biomarker for cardiovascular risk assessment in patients with chronic kidney disease (CKD). However, the mechanisms responsible for the changes in PWV in the presence of kidney disease are not yet fully elucidated. In the present study, we aimed to investigate the direct effects attributable to biomechanical changes in the arterial tree caused by staged renal removal, independent of any biochemical or compensatory effects. Particularly, we simulated arterial pressure and flow using a previously validated one-dimensional (1-D) model of the cardiovascular system with different kidney configurations: two kidneys (2KDN), one single kidney (1KDN), no kidneys (0KDN), and a transplanted kidney (TX) attached to the external iliac artery. We evaluated the respective variations in blood pressure (BP), as well as AS of large-, medium-, and small-sized arteries via carotid-femoral PWV (cfPWV), carotid-radial PWV (crPWV), and radial-digital PWV (rdPWV), respectively. Our results showed that BP was increased in 1KDN and 0KDN, and that systolic BP values were restored in the TX configuration. Furthermore, a rise was reported in all PWVs for all tested configurations. The relative difference in stiffness from 2KDN to 0KDN was higher in the case of crPWV (15%) in comparison with the increase observed for cfPWV (11%). In TX, we observed a restoration of the PWVs to values close to 1KDN. Globally, it was demonstrated that alterations of the outflow boundaries to the renal arteries with staged kidney removal led to changes in BP and central and peripheral PWV in line with previously reported clinical data. Our findings suggest that the PWV variations observed in clinical practice with different stages of kidney disease may be partially attributed to biomechanical alterations of the arterial tree and their effect on BP.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3