A super-voxel-based method for generating surrogate lung ventilation images from CT

Author:

Chen Zhi,Huang Yu-Hua,Kong Feng-Ming,Ho Wai Yin,Ren Ge,Cai Jing

Abstract

Purpose: This study aimed to develop and evaluate CTVISVD, a super-voxel-based method for surrogate computed tomography ventilation imaging (CTVI).Methods and Materials: The study used four-dimensional CT (4DCT) and single-photon emission computed tomography (SPECT) images and corresponding lung masks from 21 patients with lung cancer obtained from the Ventilation And Medical Pulmonary Image Registration Evaluation dataset. The lung volume of the exhale CT for each patient was segmented into hundreds of super-voxels using the Simple Linear Iterative Clustering (SLIC) method. These super-voxel segments were applied to the CT and SPECT images to calculate the mean density values (Dmean) and mean ventilation values (Ventmean), respectively. The final CT-derived ventilation images were generated by interpolation from the Dmean values to yield CTVISVD. For the performance evaluation, the voxel- and region-wise differences between CTVISVD and SPECT were compared using Spearman’s correlation and the Dice similarity coefficient index. Additionally, images were generated using two deformable image registration (DIR)-based methods, CTVIHU and CTVIJac, and compared with the SPECT images.Results: The correlation between the Dmean and Ventmean of the super-voxel was 0.59 ± 0.09, representing a moderate-to-high correlation at the super-voxel level. In the voxel-wise evaluation, the CTVISVD method achieved a stronger average correlation (0.62 ± 0.10) with SPECT, which was significantly better than the correlations achieved with the CTVIHU (0.33 ± 0.14, p < 0.05) and CTVIJac (0.23 ± 0.11, p < 0.05) methods. For the region-wise evaluation, the Dice similarity coefficient of the high functional region for CTVISVD (0.63 ± 0.07) was significantly higher than the corresponding values for the CTVIHU (0.43 ± 0.08, p < 0.05) and CTVIJac (0.42 ± 0.05, p < 0.05) methods.Conclusion: The strong correlation between CTVISVD and SPECT demonstrates the potential usefulness of this novel method of ventilation estimation for surrogate ventilation imaging.

Funder

Health and Medical Research Fund

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3