3D Visual Tracking to Quantify Physical Contact Interactions in Human-to-Human Touch

Author:

Xu Shan,Xu Chang,McIntyre Sarah,Olausson Håkan,Gerling Gregory J.

Abstract

Across a plethora of social situations, we touch others in natural and intuitive ways to share thoughts and emotions, such as tapping to get one’s attention or caressing to soothe one’s anxiety. A deeper understanding of these human-to-human interactions will require, in part, the precise measurement of skin-to-skin physical contact. Among prior efforts, each measurement approach exhibits certain constraints, e.g., motion trackers do not capture the precise shape of skin surfaces, while pressure sensors impede skin-to-skin contact. In contrast, this work develops an interference-free 3D visual tracking system using a depth camera to measure the contact attributes between the bare hand of a toucher and the forearm of a receiver. The toucher’s hand is tracked as a posed and positioned mesh by fitting a hand model to detected 3D hand joints, whereas a receiver’s forearm is extracted as a 3D surface updated upon repeated skin contact. Based on a contact model involving point clouds, the spatiotemporal changes of hand-to-forearm contact are decomposed as six, high-resolution, time-series contact attributes, i.e., contact area, indentation depth, absolute velocity, and three orthogonal velocity components, together with contact duration. To examine the system’s capabilities and limitations, two types of experiments were performed. First, to evaluate its ability to discern human touches, one person delivered cued social messages, e.g., happiness, anger, sympathy, to another person using their preferred gestures. The results indicated that messages and gestures, as well as the identities of the touchers, were readily discerned from their contact attributes. Second, the system’s spatiotemporal accuracy was validated against measurements from independent devices, including an electromagnetic motion tracker, sensorized pressure mat, and laser displacement sensor. While validated here in the context of social communication, this system is extendable to human touch interactions such as maternal care of infants and massage therapy.

Funder

National Science Foundation

National Institutes of Health

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Reference50 articles.

1. Human C-Tactile Afferents Are Tuned to the Temperature of a Skin-Stroking Caress;Ackerley;J. Neurosci.

2. Touch Perceptions across Skin Sites: Differences between Sensitivity, Direction Discrimination and Pleasantness;Ackerley;Front. Behav. Neurosci.

3. Affective Touch in Human-Robot Interaction: Conveying Emotion to the Nao Robot;Andreasson;Int. J. Soc. Robotics,2018

4. Sketching CuddleBits: Coupled Prototyping of Body and Behaviour for an Affective Robot Pet;Bucci,2017

5. Different Strokes and Different Folks: Economical Dynamic Surface Sensing and Affect-Related Touch Recognition;Cang,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3