Influence of rapidly oscillating inspired O2 and N2 concentrations on pulmonary vascular function and lung fluid balance in healthy adults

Author:

Kelley Eli F.,Carlson Alex R.,Wentz Robert J.,Ziegler Briana L.,Johnson Bruce D.

Abstract

Introduction: Aircrew may experience rapidly oscillating inspired O2/N2 ratios owing to fluctuations in the on-board oxygen delivery systems (OBOG). Recent investigations suggest these oscillations may contribute to the constellation of physiologic events in aircrew of high-performance aircraft. Therefore, the purpose of this study was to determine whether these “operationally-relevant” environmental challenges may cause decrements in measures of pulmonary vascular physiology.Methods: Thirty healthy participants (Age: 29 ± 5 years) were recruited and assigned to one of the three exposures. Participants were instrumented for physiologic monitoring and underwent baseline cardiopulmonary physiology testing (ground level) consisting of a rebreathe method for quantifying pulmonary blood flow (Qc), pulmonary capillary blood volume (Vc) and alveolar–capillary conductance (Dm). Ultrasound was used to quantify “comet tails” (measure of lung fluid balance). After baseline testing, the participants had two 45 min exposures to an altitude of 8,000 ft where they breathed from gas mixtures alternating between 80/20 and 30/70 O2/N2 ratios at the required frequency (30 s, 60 s, or 120 s), separated by repeat baseline measure. Immediately and 45 min after the second exposure, baseline measures were repeated.Results: We observed no changes in Qc, Dm or Vc during the 60 s exposures. In response to the 30 s oscillation exposure, there was a significantly reduced Qc and Vc at the post-testing period (p = 0.03). Additionally, exposure to the 120 s oscillations resulted in a significant decrease in Vc at the recovery testing period and an increase in the Dm/Vc ratio at both the post and recovery period (p < 0.01). Additionally, we observed no changes in the number of comet tails.Conclusion: These data suggest “operationally-relevant” changes in inspired gas concentrations may cause an acute, albeit mild pulmonary vascular derecruitment, reduced distention and/or mild pulmonary-capillary vasoconstriction, without significant changes in lung fluid balance or respiratory gas exchange. The operational relevance remains less clear, particularly in the setting of additional environmental stressors common during flight (e.g., g forces).

Funder

U. S. Air Force

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3