EEG-based real-time diagnostic system with developed dynamic 2TEMD and dynamic ApEn algorithms

Author:

Zhang Ran,Sui Linfeng,Gong Jinming,Cao Jianting

Abstract

In real-time electroencephalography (EEG) analysis, the problem of observing dynamic changes and the problem of binary classification is a promising direction. EEG energy and complexity are important evaluation metrics in brain death determination in the field of EEG analysis. We developed two algorithms, dynamic turning tangent empirical mode decomposition to compute EEG energy and dynamic approximate entropy to compute EEG complexity for brain death determination. The developed algorithm is applied to analyze 50 EEG data of coma patients and 50 EEG data of brain death patients. The validity of the dynamic analysis is confirmed by the accuracy rate derived from the comparison with turning tangent empirical mode decomposition and approximate entropy algorithms. We evaluated the EEG data of three patients using the built diagnostic system. The experimental results visually showed that the EEG energy ratio was higher in a coma state than that in brain death, while the complexity was lower than that in brain death.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3