Between-Subject and Within-Subject Variaton of Muscle Atrophy and Bone Loss in Response to Experimental Bed Rest

Author:

Böcker Jonas,Schmitz Marie-Therese,Mittag Uwe,Jordan Jens,Rittweger Jörn

Abstract

To improve quantification of individual responses to bed rest interventions, we analyzed peripheral quantitative computer tomography (pQCT) datasets of the lower leg of 76 participants, who took part in eight different bed rest studies. A newly developed statistical approach differentiated measurement uncertainty UMeas from between-subject-variation (BSV) and within-subject variation (WSV). The results showed that UMeas decreased 59.3% to 80% over the two decades of bed rest studies (p < 0.01), and that it was higher for muscles than for bones. The reduction of UMeas could be explained by improved measurement procedures as well as a higher standardization. The vast majority (82.6%) of the individual responses pci exceeded the 95% confidence interval defined by UMeas, indicating significant and substantial BSV, which was greater for bones than for muscles, especially at the epiphyseal measurement sites. Non-significant to small positive inter-site correlations between bone sites, but very large positive inter-site correlation between muscle sites suggests that substantial WSV exists in the tibia bone, but much less so in the calf musculature. Furthermore, endocortical circumference, an indicator of the individual’s bone geometry could partly explain WSV and BSV. These results demonstrate the existence of substantial BSV bone, and that it is partly driven by WSV, and likely also by physical activity and dietary habits prior to bed rest. In addition, genetic and epigenetic variation could potentially explain BSV, but not WSV. As to the latter, differences of bone characteristics and the bone resorption process could offer an explanation for its existence. The study has also demonstrated the importance of duplicate baseline measurements. Finally, we provide here a rationale for worst case scenarios with partly effective countermeasures in long-term space missions.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3