Electroacupuncture Regularizes Gastric Contraction and Reduces Apoptosis of Interstitial Cells of Cajal in Diabetic Rats

Author:

Wang Hongcai,Zhao Kaile,Shi Ning,Niu Qiong,Liu Chengxia,Chen Yan

Abstract

Background/AimsGastric dysmotility is a frequent complication among patients with diabetes mellitus. Electroacupuncture (EA) has been empirically used to relieve gastrointestinal symptoms. The aims of this study were to investigate the effects of EA on gastric contraction and the mechanisms of interstitial cells of Cajal (ICC) involved.Materials and MethodsMale Sprague–Dawley rats were randomized into the normal control, diabetes (DM), diabetic and sham EA (DM + SEA), diabetic and low-frequency EA (DM + LEA), and diabetic and high-frequency EA (DM + HEA) groups. Diabetic models were established and then treated with EA for 8 weeks. Body weight and blood glucose were recorded every 2 weeks. The spontaneous contractions of distal gastric strips were analyzed. Immunostaining and RT-PCR were used to test the apoptotic ICC, IGF-1/IGF-1R, and Nrf2/HO-1 pathways.ResultsThe body weight in the DM + LEA and DM + HEA groups were increased compared with that of the DM group, though there was no effect on the blood glucose. The gastric contractions were obviously disordered in the DM group, but EA could regularize the contractions. The number of apoptotic ICC was dramatically increased in the DM group, but reduced with EA treatment. Meanwhile, the IGF-1/IGF-1R pathway was verified to be significantly altered in diabetic rats. The Nrf2/HO-1 pathway was not significantly increased in the DM group. EA with different frequencies efficiently improved the expression of IGF-1/IGF-1R signaling and activated the Nrf2/HO-1 pathway.ConclusionEA could improve gastric motility dysfunction and attenuate ICC apoptosis possibly through the regulation of IGF-1/IGF-1R and Nrf2/HO-1 pathways. EA may be a potential therapeutic method for diabetic gastric motility dysfunction.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3