Organic zinc with moderate chelation strength enhances zinc absorption in the small intestine and expression of related transporters in the duodenum of broilers

Author:

Hu Yun,Wang Chuanlong,Wu Wei,Qu Yicheng,Zhang Weiyun,Li Ding,Zhu Ling,Gao Feiyu,Wu Bingxin,Zhang Liyang,Cui Xiaoyan,Li Tingting,Geng Yanqiang,Luo Xugang

Abstract

Our previous study demonstrated that the absorption of zinc (Zn) from the organic Zn proteinate with moderate chelation strength was significantly higher than that of Zn from the inorganic Zn sulfate in the in situ ligated duodenal segment of broilers, but the underlying mechanisms are unknown. The present study aimed to determine the effect of organic Zn with moderate chelation strength and inorganic Zn on the Zn absorption in the small intestine and the expression of related transporters in the duodenum of broilers. The Zn-deficient broilers (13 days old) were fed with the Zn-unsupplemented basal diets (control) containing 25.72 and 25.64 mg Zn/kg by analysis or the basal diets supplemented with 60 mg Zn/kg as the Zn sulfate or the Zn proteinate with moderate chelation strength (Zn-Prot M) for 26 days. The results showed that the plasma Zn contents from the hepatic portal vein of broilers at 28 days and 39 days of age were increased (p < 0.05) by Zn addition and greater (p < 0.05) in the Zn-Prot M than in the Zn sulfate. On d 28, Zn addition upregulated (p < 0.05) mRNA expression of zinc transporter 1 (ZnT1), Zrt-irt-like protein 5 (ZIP5), y + L-type amino transporter 2 (y + LAT2) and b0,+-type amino acid transporter (rBAT), zinc transporter 4 (ZnT4) protein expression, and zinc transporter 9 (ZnT9) mRNA and protein expression in the duodenum. Moreover, ZnT9 mRNA expression, ZnT4, ZIP5, and rBAT protein expression, zinc transporter 7 (ZnT7), and y + LAT2 mRNA and protein expression in the duodenum of broilers on 28 days were higher (p < 0.05) in the Zn-Prot M than in the Zn sulfate. On d 39, supplemental Zn increased (p < 0.05) peptide-transporter 1 (PepT1) mRNA expression and y + LAT2 protein expression, while the mRNA expression of ZnT7 and Zrt-irt-like protein 3 (ZIP3) were higher (p < 0.05) for the Zn-Prot M than for the Zn sulfate in the duodenum. It was concluded that the Zn-Prot M enhanced the Zn absorption in the small intestine partially via upregulating the expression of ZnT4, ZnT7, ZnT9, ZIP3, ZIP5, y + LAT2, and rBAT in the duodenum of broilers.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Reference43 articles.

1. The absorption and metabolism of iron amino acid chelate;Ashmead;Arch. Latinoam. Nutr.,2001

2. Official Methods of Analysis,1990

3. Arbor Acres Broiler Management Guide,2009

4. Organic iron absorption and expression of related transporters in the small intestine of broilers;Bai;Poult. Sci.,2021

5. Function, structure, and transport aspects of ZIP and ZnT zinc transporters in immune cells;Bin;J. Immunol. Res.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3