Uncovering the Roles of Clocks and Neural Transmission in the Resilience of Drosophila Circadian Network

Author:

Jaumouillé Edouard,Koch Rafael,Nagoshi Emi

Abstract

Studies of circadian locomotor rhythms in Drosophila melanogaster gave evidence to the preceding theoretical predictions on circadian rhythms. The molecular oscillator in flies, as in virtually all organisms, operates using transcriptional-translational feedback loops together with intricate post-transcriptional processes. Approximately150 pacemaker neurons, each equipped with a molecular oscillator, form a circuit that functions as the central pacemaker for locomotor rhythms. Input and output pathways to and from the pacemaker circuit are dissected to the level of individual neurons. Pacemaker neurons consist of functionally diverse subclasses, including those designated as the Morning/Master (M)-oscillator essential for driving free-running locomotor rhythms in constant darkness and the Evening (E)-oscillator that drives evening activity. However, accumulating evidence challenges this dual-oscillator model for the circadian circuit organization and propose the view that multiple oscillators are coordinated through network interactions. Here we attempt to provide further evidence to the revised model of the circadian network. We demonstrate that the disruption of molecular clocks or neural output of the M-oscillator during adulthood dampens free-running behavior surprisingly slowly, whereas the disruption of both functions results in an immediate arrhythmia. Therefore, clocks and neural communication of the M-oscillator act additively to sustain rhythmic locomotor output. This phenomenon also suggests that M-oscillator can be a pacemaker or a downstream path that passively receives rhythmic inputs from another pacemaker and convey output signals. Our results support the distributed network model and highlight the remarkable resilience of the Drosophila circadian pacemaker circuit, which can alter its topology to maintain locomotor rhythms.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Japan Science and Technology Agency

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3