How Reproducibility Will Accelerate Discovery Through Collaboration in Physio-Logging

Author:

Czapanskiy Max F.,Beltran Roxanne S.

Abstract

What new questions could ecophysiologists answer if physio-logging research was fully reproducible? We argue that technical debt (computational hurdles resulting from prioritizing short-term goals over long-term sustainability) stemming from insufficient cyberinfrastructure (field-wide tools, standards, and norms for analyzing and sharing data) trapped physio-logging in a scientific silo. This debt stifles comparative biological analyses and impedes interdisciplinary research. Although physio-loggers (e.g., heart rate monitors and accelerometers) opened new avenues of research, the explosion of complex datasets exceeded ecophysiology’s informatics capacity. Like many other scientific fields facing a deluge of complex data, ecophysiologists now struggle to share their data and tools. Adapting to this new era requires a change in mindset, from “data as a noun” (e.g., traits, counts) to “data as a sentence”, where measurements (nouns) are associate with transformations (verbs), parameters (adverbs), and metadata (adjectives). Computational reproducibility provides a framework for capturing the entire sentence. Though usually framed in terms of scientific integrity, reproducibility offers immediate benefits by promoting collaboration between individuals, groups, and entire fields. Rather than a tax on our productivity that benefits some nebulous greater good, reproducibility can accelerate the pace of discovery by removing obstacles and inviting a greater diversity of perspectives to advance science and society. In this article, we 1) describe the computational challenges facing physio-logging scientists and connect them to the concepts of technical debt and cyberinfrastructure, 2) demonstrate how other scientific fields overcame similar challenges by embracing computational reproducibility, and 3) present a framework to promote computational reproducibility in physio-logging, and bio-logging more generally.

Funder

National Science Foundation

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Reference47 articles.

1. How to Professionally Develop Reusable Scientific Software-And when Not to;Adorf;Comput. Sci. Eng.,2019

2. Orchestrating Single-Cell Analysis with Bioconductor;Amezquita;Nat. Methods,2020

3. R Markdown;Baumer;WIREs Comput. Stat.,2015

4. Toward a Metabolic Theory of Ecology;Brown;Ecology,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3