Author:
Kasiak Przemysław,Kowalski Tomasz,Rębiś Kinga,Klusiewicz Andrzej,Starczewski Michał,Ładyga Maria,Wiecha Szczepan,Barylski Marcin,Poliwczak Adam Rafał,Wierzbiński Piotr,Mamcarz Artur,Śliż Daniel
Abstract
Background: The ratio of oxygen uptake (VO2) to minute ventilation (VE) is described as the oxygen uptake efficiency slope (OUES). OUES has been suggested as a valuable submaximal cardiorespiratory index; however, its characteristics in endurance athletes remain unknown. In this study, we a) investigated OUES between different time intervals, b) assessed their prediction power for VO2peak, and c) derived new prediction equations for OUES tailored for well-trained individuals.Materials and Methods: A total of 77 male (age = 21.4 ± 4.8 yrs; BMI = 22.1 ± 1.6 kg·m−2; peak oxygen uptake = 4.40 ± 0.64 L·min−1) and 63 female individuals (age = 23.4 ± 4.3 yrs; BMI = 23.1 ± 1.6 kg·m−2; peak oxygen uptake = 3.21 ± 0.48 L·min−1) underwent the cycling cardiopulmonary exercise test. OUES was measured at 75%, 90%, and 100% of exercise duration. Prediction power and new models were derived with the multiple linear regression method.Results: In male subjects, OUES [mL·min−1/L·min−1] from 75% = 4.53 ± 0.90, from 90% = 4.52 ± 0.91, and from 100% = 4.41 ± 0.87. In female subjects, OUES [mL·min−1/L·min−1] from 75% = 3.50 ± 0.65, from 90% = 3.49 ± 0.62, and from 100% = 3.41 ± 0.58. OUES did not differ between time intervals in male (p = 0.65) and female individuals (p = 0.69). OUES strongly predicts peak VO2 independently from the measuring interval (β = 0.71–0.80; R2 = 0.50–0.63). The prediction model designed for elite athletes was OUES [mL·min−1/L·min−1] = −1.54 + 2.99; BSA [m2]—0.0014; (age [in years]; sex [1 = male, 2 = female]) (R2 = 0.36).Conclusion: OUES enables an accurate prediction of peak cardiorespiratory fitness in elite endurance athletes. OUES is a feasible alternative to maximal exercise testing. A new prediction equation should be used for highly trained individuals. Physicians should understand OUES physiology to properly assess the cardiorespiratory response to exercise in athletic cohorts.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献