Comparison of Physiological and Perceptional Responses to 5-m Forward, Forward-Backward, and Lateral Shuttle Running

Author:

Gao Chong,Wang Xiaolu,Zhang Guochao,Huang Li,Han Mengyuan,Li Bo,Nassis George P.,Li Yongming

Abstract

PurposeThe aim of this study was to investigate the physiological and perceptional responses to forward, forward-backward, and lateral shuttle running.MethodsTwenty-four eligible male subjects performed a maximal oxygen uptake (VO2max) test and three directional modes (i.e., forward, forward-backward, and lateral) of 5-m shuttle running at the speed of 6 km⋅h–1 for 5 min on separate days. Heart rate (HR) and oxygen uptake (VO2) were continuously measured during the whole tests. Rating of perceived exertion (RPE) was inquired and recorded immediately after the test. Capillary blood samples were collected from the earlobe during the recovery to determine the peak value of blood lactate concentration ([La]peak).ResultsRunning directional mode had significant effects on HR (F = 72.761, P < 0.001, η2p = 0.760), %HRmax (F = 75.896, P < 0.001, η2p = 0.767), VO2 (F = 110.320, P < 0.001, η2p = 0.827), %VO2max (F = 108.883, P < 0.001, η2p = 0.826), [La]peak (F = 55.529, P < 0.001, η2p = 0.707), and RPE (F = 26.268, P < 0.001, η2p = 0.533). All variables were significantly different between conditions (P ≤ 0.026), with the variables highest in lateral shuttle running and lowest in forward shuttle running. The effect sizes indicated large magnitude in the differences of all variables between conditions (ES = 0.86–2.83, large) except the difference of RPE between forward and forward-backward shuttle running (ES = 0.62, moderate).ConclusionThese findings suggest that the physiological and perceptional responses in shuttle running at the same speed depend on the directional mode, with the responses highest in lateral shuttle running, and lowest in forward shuttle running.

Funder

Science and Technology Commission of Shanghai Municipality

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3