Regulatory roles of Bxy-laf-1 in reproductive behaviour of Bursaphelenchus xylophilus

Author:

Sun Shimiao,Wang Jinghan,Liu Wenyi,Chen Jing,Zhou Lifeng,Wu Choufei,Yu Hongshi,Hu Jiafu

Abstract

Bursaphelenchus xylophilu is a worldwide quarantine nematode, causing huge economic losses and ecological disasters in many countries. The sex ratio of B. xylophilus plays an important role in the nematode infestation. The laf-1-related genes are highly conserved in animals, playing crucial roles in sex determination. Therefore, we investigated the expression pattern and biological function of its orthologue, Bxy-laf-1 in B. xylophilus. Bxy-laf-1 has two typical conserved DNA-binding domains, DEAD and Helicase C. The real-time quantitative PCR data revealed that Bxy-laf-1 expression was required throughout the entire life of B. xylophilus, with the maximum expression in the J2 stage and the lowest expression in the adult stage. mRNA in situ hybridization showed that Bxy-laf-1 is mainly located in the cephalopharynx and reproductive organs of B. xylophilus. RNA interference (RNAi) indicated that the head swing frequency was dramatically decreased. The RNA interference results displayed that a significant reduction in motility was observed in the hatched larvae. The female to male sex ratio was also decreased in the F0 and F1 generations, but recovered in the F2 generation. The tail of female adults with eggs in the belly appeared deformities. This phenomenon appeared in the F0 and F1 generations, but recovered in the F2 generation. Bxy-laf-1 is a typical sex-determination gene with distinct expression patterns in males and females. As demonstrated in other species, the sex ratio was altered after knocking down Bxy-laf-1 expression. The results of this study contribute to our understanding of the molecular processes of Bxy-laf-1 in B. xylophilus, which may provide clues about how to control pine wilt disease by inhibiting ontogenic growth and reducing nematode fertility.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3