Physiological and biochemical differences in diapause and non-diapause pupae of Sericinus montelus (Lepidoptera: Papilionidae)

Author:

Xiao Quan-Hong,He Zhe,Wu Rong-Wei,Zhu Dao-Hong

Abstract

The swallowtail butterfly, Sericinus montelus Gray, is endemic to East Asia, has high ornamental value but faces an increased risk of extinction. To understand the overwintering strategies of this species, the dynamic changes in supercooling point (SCP) and water and biochemical contents of diapause-destined and non-diapause S. montelus pupae were investigated. The SCP of laboratory-reared diapause pupae was as low as −26°C compared to −24°C in diapause pupae in the field. Although there was no significant difference in total water content between diapause-destined and non-diapause pupae, the free water of diapause-destined pupae was significantly lower, and the bound water was significantly higher, than that of non-diapause pupae. Lipid, glycogen, and protein contents of diapause-destined pupae showed a downward trend, whereas the total sugar content showed the opposite trend after pupation. The glycogen content decreased rapidly during the initial stage of pupation, whereas the lipid content decreased significantly after 30 days of pupation, suggesting that diapause-destined pupae deplete glycogen stores during the pre-diapause period and then switch to using lipids during the diapause maintenance phase. Trehalose levels in diapause-destined pupae increased significantly and remained high after pupation. Meanwhile, the trehalose content of overwintering pupae during the diapause maintenance period was significantly higher than that of diapause termination pupae in the field. These results suggest that trehalose is the main cryoprotectant for overwintering pupae. Thus, diapausing S. montelus pupae appear to be freeze avoidant, accumulate trehalose as a cryoprotectant, and reduce the free water content to decrease the SCP, enhancing their cold tolerance.

Funder

Ministry of Science and Technology of the People’s Republic of China

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3