Comparative Morphology of the Symbiont Cultivation Glands in the Antennae of Female Digger Wasps of the Genus Philanthus (Hymenoptera: Crabronidae)

Author:

Goettler Wolfgang,Kaltenpoth Martin,McDonald Samuel,Strohm Erhard

Abstract

Females of the solitary digger wasp tribe Philanthini, called the beewolves (Hymenoptera, Crabronidae), cultivate strains of symbiotic bacteria that belong to the genus Streptomyces in unique and highly specialized glands in their antennae. The glands consist of large reservoirs that are surrounded by numerous gland cell complexes (class III). The symbionts are cultivated inside the reservoirs and are probably provisioned with nutrients secreted from the surrounding glands and/or sequestered from the hemolymph. The wasp female delivers the bacteria into the subterranean brood cell prior to oviposition. Fully grown larvae take up the bacteria and apply them to their cocoon. There the bacteria produce several antibiotics that protect the wasp offspring against fungus infestation. Hitherto Streptomyces bacteria were detected in the antennae of 38 species of the Philanthini. However, a detailed morphological analysis of the antennal glands is only available for a few species. In order to shed light on the evolutionary history of the association between beewolf wasps and bacteria, we investigated the morphology of the antennal glands of another 14 Philanthus species from the Palearctic, Paleotropic, and Nearctic. We generated 3D-models of the glands based on serial semithin sections and/or micro-CT (μCT). Despite broad similarities in number and structure of antennal glands, the results revealed interspecific differences with regard to overall shape, complexity, and relative size of the reservoirs as well as the number of the surrounding gland cell units. Mapping the morphology of all species studied so far on the phylogeny (that parallels geographical distribution) revealed that related species share similarities in gland morphology, but there are notable differences between lineages. In particular, compared to the North American species the European and African species possess more complex gland structures with a higher number of gland cells. We discuss morphological, ecological, and physiological aspects and provide scenarios for the evolution of the antennal glands of the Philanthini as symbiont cultivation organs.

Funder

Volkswagenstiftung

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3