Author:
Selli Anders L.,Kuzmiszyn Adrina K.,Smaglyukova Natalia,Kondratiev Timofei V.,Fuskevåg Ole-Martin,Lyså Roy A.,Ravna Aina W.,Tveita Torkjel,Sager Georg,Dietrichs Erik S.
Abstract
IntroductionCardiovascular dysfunction is a potentially lethal complication of hypothermia. Due to a knowledge gap, pharmacological interventions are not recommended at core temperatures below 30°C. Yet, further cooling is induced in surgical procedures and survival of accidental hypothermia is reported after rewarming from below 15°C, advocating a need for evidence-based treatment guidelines. In vivo studies have proposed vasodilation and afterload reduction through arteriole smooth muscle cGMP-elevation as a favorable strategy to prevent cardiovascular dysfunction in hypothermia. Further development of treatment guidelines demand information about temperature-dependent changes in pharmacological effects of clinically relevant vasodilators.Materials and MethodsHuman phosphodiesterase-enzymes and inverted erythrocytes were utilized to evaluate how vasodilators sildenafil and vardenafil affected cellular efflux and enzymatic breakdown of cAMP and cGMP, at 37°C, 34°C, 32°C, 28°C, 24°C, and 20°C. The ability of both drugs to reach their cytosolic site of action was assessed at the same temperatures. IC50- and Ki-values were calculated from dose–response curves at all temperatures, to evaluate temperature-dependent effects of both drugs.ResultsBoth drugs were able to reach the intracellular space at all hypothermic temperatures, with no reduction compared to normothermia. Sildenafil IC50 and Ki-values increased during hypothermia for enzymatic breakdown of both cAMP (IC50: 122 ± 18.9 μM at 37°C vs. 269 ± 14.7 μM at 20°C, p < 0.05) and cGMP (IC50: 0.009 ± 0.000 μM at 37°C vs. 0.024 ± 0.004 μM at 32°C, p < 0.05), while no significant changes were detected for vardenafil. Neither of the drugs showed significant hypothermia-induced changes in IC50 and Ki–values for inhibition of cellular cAMP and cGMP efflux.ConclusionSildenafil and particularly vardenafil were ableto inhibit elimination of cGMP down to 20°C. As the cellular effects of these drugs can cause afterload reduction, they show potential in treating cardiovascular dysfunction during hypothermia. As in normothermia, both drugs showed higher selectivity for inhibition of cGMP-elimination than cAMP-elimination at low core temperatures, indicating that risk for cardiotoxic side effects is not increased by hypothermia.
Funder
Universitetet i Tromsø
Stiftelsen Norsk Luftambulanse
Helse Nord RHF
Subject
Physiology (medical),Physiology
Reference51 articles.
1. Regulation of cAMP by phosphodiesterases in erythrocytes.;Adderley;Pharmacol. Rep.,2010
2. Phosphodiesterase type 5 inhibitors in the treatment and prevention of high altitude pulmonary edema.;Bates;Curr. Opin. Investig. Drugs,2007
3. Potency, selectivity, and consequences of nonselectivity of PDE inhibition.;Bischoff;Int. J. Impot. Res.
4. Vardenafil preclinical trial data: potency, pharmacodynamics, pharmacokinetics, and adverse events.;Bischoff;Int. J. Impotence Res.
5. Accidental Hypothermia.;Brown;N. Engl. J. Med.,2012
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献