Oxygen uptake (V˙ O2) and pulmonary ventilation (V˙ E) during military surface fin swimming in a swimming flume: Effects of surface immersion

Author:

Castagna Olivier,Blatteau Jean-Eric,Druelle Arnaud,Amara Jordan,Lacour Jean-René

Abstract

Introduction: During military fin swimming, we suspected that oxygen uptake (V˙ O2) and pulmonary ventilation (V˙ E) might be much higher than expected. In this framework, we compared these variables in the responses of trained military divers during land cycling and snorkeling exercises.Methods: Eighteen male military divers (32.3 ± 4.2 years; 178.0 ± 5.0 cm; 76.4 ± 3.4 kg; 24.1 ± 2.1 kg m-2) participated in this study. They performed two test exercises on two separate days: a maximal incremental cycle test (land condition), and an incremental fin swimming (fin condition) in a motorized swimming flume.Results: The respective fin and landV˙ O2max were 3,701 ± 39 mL min-1 and 4,029 ± 63 mL min-1 (p = 0.07), these values were strongly correlated (r2 = 0.78 p < 0.01). Differences in V˙ O2max between conditions increased relative to l;V˙ O2max (r2 = 0.4 p = 0.01). FinV˙ Emax values were significantly lower than landV˙ Emax values (p = 0.01). This result was related to both the significantly lower fin Vt and f (p < 0.01 and <0.04, respectively). Consequently, the finV˙ Emax/V˙ O2max ratios were significantly lower than the corresponding ratios for land values (p < 0.01), and the fin and landV˙ Emax were not correlated. Other parameters measured at exhaustion—PaO2, PaCO2, and SO2 - were similar in fin and land conditions. Furthermore, no significant differences between land and fin conditions were observed for peak values for heart rate, blood lactate concentration, and respiratory exchange ratio R.Conclusion: Surface immersion did not significantly reduce the V˙ O2max in trained divers relative to land conditions. As long as V˙ O2 remained below V˙ O2max, the V˙ E values were identical in the two conditions. Only at V˙ O2max was V˙ E higher on land. Although reduced by immersion, V˙ Emax provided adequate pulmonary gas exchange during maximal fin swimming.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3