Exploring interpretability in deep learning prediction of successful ablation therapy for atrial fibrillation

Author:

Ogbomo-Harmitt Shaheim,Muffoletto Marica,Zeidan Aya,Qureshi Ahmed,King Andrew P.,Aslanidi Oleg

Abstract

Background: Radiofrequency catheter ablation (RFCA) therapy is the first-line treatment for atrial fibrillation (AF), the most common type of cardiac arrhythmia globally. However, the procedure currently has low success rates in dealing with persistent AF, with a reoccurrence rate of ∼50% post-ablation. Therefore, deep learning (DL) has increasingly been applied to improve RFCA treatment for AF. However, for a clinician to trust the prediction of a DL model, its decision process needs to be interpretable and have biomedical relevance.Aim: This study explores interpretability in DL prediction of successful RFCA therapy for AF and evaluates if pro-arrhythmogenic regions in the left atrium (LA) were used in its decision process.Methods: AF and its termination by RFCA have been simulated in MRI-derived 2D LA tissue models with segmented fibrotic regions (n = 187). Three ablation strategies were applied for each LA model: pulmonary vein isolation (PVI), fibrosis-based ablation (FIBRO) and a rotor-based ablation (ROTOR). The DL model was trained to predict the success of each RFCA strategy for each LA model. Three feature attribution (FA) map methods were then used to investigate interpretability of the DL model: GradCAM, Occlusions and LIME.Results: The developed DL model had an AUC (area under the receiver operating characteristic curve) of 0.78 ± 0.04 for predicting the success of the PVI strategy, 0.92 ± 0.02 for FIBRO and 0.77 ± 0.02 for ROTOR. GradCAM had the highest percentage of informative regions in the FA maps (62% for FIBRO and 71% for ROTOR) that coincided with the successful RFCA lesions known from the 2D LA simulations, but unseen by the DL model. Moreover, GradCAM had the smallest coincidence of informative regions of the FA maps with non-arrhythmogenic regions (25% for FIBRO and 27% for ROTOR).Conclusion: The most informative regions of the FA maps coincided with pro-arrhythmogenic regions, suggesting that the DL model leveraged structural features of MRI images to identify such regions and make its prediction. In the future, this technique could provide a clinician with a trustworthy decision support tool.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Reference57 articles.

1. Sanity checks for saliency maps;Adebayo;Adv. Neural Inf. Process Syst.,2018

2. Machine learning to classify intracardiac electrical patterns during atrial fibrillation: Machine learning of atrial fibrillation;Alhusseini;Circ. Arrhythm. Electrophysiol.,2020

3. Towards better understanding of gradient-based attribution methods for Deep Neural Networks;Ancona,2017

4. ICAM-reg: Interpretable classification and regression with feature attribution for mapping neurological phenotypes in individual scans;Bass;IEEE Trans. Med. Imaging,2022

5. It’s just not that simple: An empirical study of the accuracy-explainability trade-off in machine learning for public policy;Bell;ACM Int. Conf. Proceeding Ser.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effects of Fibrotic Border Zone on Drivers for Atrial Fibrillation: An In-Silico Mechanistic Investigation;Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3