Non-palm Plant Volatile α-Pinene Is Detected by Antenna-Biased Expressed Odorant Receptor 6 in the Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae)

Author:

Ji Tianliang,Xu Zhi,Jia Qingchen,Wang Guirong,Hou Youming

Abstract

The majority of insects rely on a highly complex and precise olfactory system to detect various volatile organic compounds released by host and non-host plants in environments. The odorant receptors (ORs) are considered to play an important role in odor recognition and the molecular basis of ORs, particularly in coleopterans they are relatively poorly understood. The red palm weevil (RPW), Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae), is one of the most destructive pests of the global palm industry. Although feeding and egg oviposition behaviors of RPW can be repelled by some non-palm plant volatiles, such as α-pinene, geraniol, or 1-octen-3-ol, there is limited understanding of how RPW recognizes the non-host plant volatiles. In this study, three candidate RferOrs were identified from the Rfer-specific clade, and the tissue expression analysis used was mainly expressed in the antennae of both sexes. Functional characterization of RferOr6, RferOr40, and RferOr87 was analyzed by using the Xenopus oocyte expression system, and the results indicated that RferOr6/RferOrco was narrowly tuned to α-pinene. The behavioral experiment showed that α-pinene at the concentrations of 10 and 100 μg/μl can cause a significantly repelled behavioral response of RPW. In conclusion, this study reveals that RferOr6 is an antenna-biased expressed OR used by RPW to detect the volatile compound α-pinene in non-palm plants, and our results provide a foundation for further in vivo functional studies of Or6 in RPW, including in vivo knockout/knockdown and feeding/ovipositing behavioral studies of RPW and further pest control.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3