A New Fitness Test of Estimating VO2max in Well-Trained Rowing Athletes

Author:

Gao Wei Dong,Nuuttila Olli-Pekka,Fang Hai Bo,Chen Qian,Chen Xi

Abstract

BackgroundThis study was designed to investigate the validity of maximal oxygen consumption (VO2max) estimation through the Firstbeat fitness test (FFT) method when using submaximal rowing and running programs for well-trained athletes.MethodsWell-trained flatwater rowers (n = 45, 19.8 ± 3.0 years, 184 ± 8.7 cm, 76 ± 12.9 kg, and 58.7 ± 6.0 mL⋅kg–1⋅min–1) and paddlers (n = 45, 19.0 ± 2.5 years, 180 ± 7.7 cm, 74 ± 9.4 kg, and 59.9 ± 4.8 mL⋅kg–1⋅min–1) completed the FFT and maximal graded exercise test (GXT) programs of rowing and running, respectively. The estimated VO2max was calculated using the FFT system, and the measured VO2max was obtained from the GXT programs. Differences between the estimated and measured VO2max values were analyzed to assess the accuracy and agreement of the predictions. Equations from the previous study were also used to predict the VO2max in the submaximal programs to compare the accuracy of prediction with the FFT method.ResultsThe FFT method was in good agreement with the measured VO2max in both groups based on the intraclass correlation coefficients (>0.8). Additionally, the FFT method had considerable accuracy in VO2max estimation as the mean absolute percentage error (≤5.0%) and mean absolute error (<3.0 mL⋅kg–1⋅min–1) were fairly low. Furthermore, the FFT method seemed more accurate in the estimation of VO2max than previously reported equations, especially in the rowing test program.ConclusionThis study revealed that the FFT method provides a considerably accurate estimation of VO2max in well-trained athletes.

Funder

Wenzhou Medical University

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3