Thermal Strain During Open-Water Swimming Competition in Warm Water Environments

Author:

Chalmers Samuel,Shaw Gregory,Mujika Iñigo,Jay Ollie

Abstract

Open-water swim racing in warm water is associated with significant physiological strain. However, existing international policy that governs safe participation during competition relies only on a fixed water temperature threshold for event cancellation and has an unclear biophysical rationale. The current policy does not factor other environmental factors or race distance, nor provide a stratification of risk (low, moderate, high, or extreme) prior to the threshold for cancellation. Therefore, the primary aim of this Perspectives article is to highlight considerations for the development of modernized warm-water competition policies. We highlight current accounts (or lack thereof) of thermal strain, cooling interventions, and performance in warm-water swimming and opportunities for advancement of knowledge. Further work is needed that systematically evaluate real-world thermal strain and performance during warm water competition (alongside reports of environmental conditions), novel preparatory strategies, and in-race cooling strategies. This could ultimately form a basis for future development of modernized policies for athlete cohorts that stratifies risk and mitigation strategies according to important environmental factors and race-specific factors (distance).

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Approach to the Game Take the Ball to Practice Swimming Skills for Beginners in Physical Education;International Journal of Disabilities Sports and Health Sciences;2024-07-25

2. Beating the heat: military training and operations in the era of global warming;Journal of Applied Physiology;2023-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3